The Bacterial Hydrophobin BslA is a Switchable Ellipsoidal Janus Nanocolloid.
نویسندگان
چکیده
BslA is an amphiphilic protein that forms a highly hydrophobic coat around Bacillus subtilis biofilms, shielding the bacterial community from external aqueous solution. It has a unique structure featuring a distinct partition between hydrophilic and hydrophobic surfaces. This surface property is reminiscent of synthesized Janus colloids. By investigating the behavior of BslA variants at water-cyclohexane interfaces through a set of multiscale simulations informed by experimental data, we show that BslA indeed represents a biological example of an ellipsoidal Janus nanoparticle, whose surface interactions are, moreover, readily switchable. BslA contains a local conformational toggle, which controls its global affinity for, and orientation at, water-oil interfaces. This adaptability, together with single-point mutations, enables the fine-tuning of its solvent and interfacial interactions, and suggests that BslA could be a basis for biotechnological applications.
منابع مشابه
BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm.
Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that native...
متن کاملFabrication of Modularly Functionalizable Microcapsules Using Protein-Based Technologies
Proteins are desirable building blocks to create self-assembled, spatially defined structures and interfaces on length-scales that are inaccessible by traditional methods. Here, we describe a novel approach to create functionalized monolayers using the proteins BslA and SpyCatcher/SpyTag. BslA is a bacterial hydrophobin whose amphiphilic character underlies its ability to assemble into a monola...
متن کاملMolecular Dynamics Simulations of Protein Adsorption at Interfaces
Proteins can often adsorb irreversibly at fluid/fluid interfaces; the understanding of the adsorption mechanism has relevance across a variety of industrial (e.g. the creation of stable emulsions) and biological (e.g. biofilm formation) processes. I performed molecular dynamics simulations of two surfactant proteins as they interact with air/water and oil/water interfaces, describing the origin...
متن کاملPresence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms
Robust colony formation by Bacillus subtilis is recognized as one of the sessile, multicellular lifestyles of this bacterium. Numerous pathways and genes are responsible for the architecturally complex colony structure development. Cells in the biofilm colony secrete extracellular polysaccharides (EPS) and protein components (TasA and the hydrophobin BslA) that hold them together and provide a ...
متن کاملInterfacial self-assembly of a bacterial hydrophobin.
The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 31 42 شماره
صفحات -
تاریخ انتشار 2015